562 research outputs found

    A fast and accurate first-order algorithm for compressed sensing

    Get PDF
    This paper introduces a new, fast and accurate algorithm for solving problems in the area of compressed sensing, and more generally, in the area of signal and image reconstruction from indirect measurements. This algorithm is inspired by recent progress in the development of novel first-order methods in convex optimization, most notably Nesterov’s smoothing technique. In particular, there is a crucial property thatmakes thesemethods extremely efficient for solving compressed sensing problems. Numerical experiments show the promising performance of our method to solve problems which involve the recovery of signals spanning a large dynamic range

    Polarized wavelets and curvelets on the sphere

    Full text link
    The statistics of the temperature anisotropies in the primordial cosmic microwave background radiation field provide a wealth of information for cosmology and for estimating cosmological parameters. An even more acute inference should stem from the study of maps of the polarization state of the CMB radiation. Measuring the extremely weak CMB polarization signal requires very sensitive instruments. The full-sky maps of both temperature and polarization anisotropies of the CMB to be delivered by the upcoming Planck Surveyor satellite experiment are hence being awaited with excitement. Multiscale methods, such as isotropic wavelets, steerable wavelets, or curvelets, have been proposed in the past to analyze the CMB temperature map. In this paper, we contribute to enlarging the set of available transforms for polarized data on the sphere. We describe a set of new multiscale decompositions for polarized data on the sphere, including decimated and undecimated Q-U or E-B wavelet transforms and Q-U or E-B curvelets. The proposed transforms are invertible and so allow for applications in data restoration and denoising.Comment: Accepted. Full paper will figures available at http://jstarck.free.fr/aa08_pola.pd

    CMB map restoration

    Get PDF
    Estimating the cosmological microwave background is of utmost importance for cosmology. However, its estimation from full-sky surveys such as WMAP or more recently Planck is challenging: CMB maps are generally estimated via the application of some source separation techniques which never prevent the final map from being contaminated with noise and foreground residuals. These spurious contaminations whether noise or foreground residuals are well-known to be a plague for most cosmologically relevant tests or evaluations; this includes CMB lensing reconstruction or non-Gaussian signatures search. Noise reduction is generally performed by applying a simple Wiener filter in spherical harmonics; however this does not account for the non-stationarity of the noise. Foreground contamination is usually tackled by masking the most intense residuals detected in the map, which makes CMB evaluation harder to perform. In this paper, we introduce a novel noise reduction framework coined LIW-Filtering for Linear Iterative Wavelet Filtering which is able to account for the noise spatial variability thanks to a wavelet-based modeling while keeping the highly desired linearity of the Wiener filter. We further show that the same filtering technique can effectively perform foreground contamination reduction thus providing a globally cleaner CMB map. Numerical results on simulated but realistic Planck data are provided

    Sparsity and morphological diversity for hyperspectral data analysis

    Get PDF
    Recently morphological diversity and sparsity have emerged as new and effective sources of diversity for Blind Source Separation. Based on these new concepts, novelmethods such as Generalized Morphological Component Analysis have been put forward. The latter takes advantage of the very sparse representation of structured data in large overcomplete dictionaries, to separate sources based on their morphology. Building on GMCA, the purpose of this contribution is to describe a new algorithm for hyperspectral data processing. Large-scale hyperspectral data refers to collected data that exhibit sparse spectral signatures in addition to sparse spatial morphologies, in specified dictionaries of spectral and spatial waveforms. Numerical experiments are reported which demonstrate the validity of the proposed extension for solving source separation problems involving hyperspectral data

    Sparse component separation for accurate CMB map estimation

    Get PDF
    The Cosmological Microwave Background (CMB) is of premier importance for the cosmologists to study the birth of our universe. Unfortunately, most CMB experiments such as COBE, WMAP or Planck do not provide a direct measure of the cosmological signal; CMB is mixed up with galactic foregrounds and point sources. For the sake of scientific exploitation, measuring the CMB requires extracting several different astrophysical components (CMB, Sunyaev-Zel'dovich clusters, galactic dust) form multi-wavelength observations. Mathematically speaking, the problem of disentangling the CMB map from the galactic foregrounds amounts to a component or source separation problem. In the field of CMB studies, a very large range of source separation methods have been applied which all differ from each other in the way they model the data and the criteria they rely on to separate components. Two main difficulties are i) the instrument's beam varies across frequencies and ii) the emission laws of most astrophysical components vary across pixels. This paper aims at introducing a very accurate modeling of CMB data, based on sparsity, accounting for beams variability across frequencies as well as spatial variations of the components' spectral characteristics. Based on this new sparse modeling of the data, a sparsity-based component separation method coined Local-Generalized Morphological Component Analysis (L-GMCA) is described. Extensive numerical experiments have been carried out with simulated Planck data. These experiments show the high efficiency of the proposed component separation methods to estimate a clean CMB map with a very low foreground contamination, which makes L-GMCA of prime interest for CMB studies.Comment: submitted to A&

    SZ and CMB reconstruction using Generalized Morphological Component Analysis

    Full text link
    In the last decade, the study of cosmic microwave background (CMB) data has become one of the most powerful tools to study and understand the Universe. More precisely, measuring the CMB power spectrum leads to the estimation of most cosmological parameters. Nevertheless, accessing such precious physical information requires extracting several different astrophysical components from the data. Recovering those astrophysical sources (CMB, Sunyaev-Zel'dovich clusters, galactic dust) thus amounts to a component separation problem which has already led to an intense activity in the field of CMB studies. In this paper, we introduce a new sparsity-based component separation method coined Generalized Morphological Component Analysis (GMCA). The GMCA approach is formulated in a Bayesian maximum a posteriori (MAP) framework. Numerical results show that this new source recovery technique performs well compared to state-of-the-art component separation methods already applied to CMB data.Comment: 11 pages - Statistical Methodology - Special Issue on Astrostatistics - in pres

    Joint Planck and WMAP CMB Map Reconstruction

    Get PDF
    We present a novel estimate of the cosmological microwave background (CMB) map by combining the two latest full-sky microwave surveys: WMAP nine-year and Planck PR1. The joint processing benefits from a recently introduced component separation method coined "local-generalized morphological component analysis'' (LGMCA) based on the sparse distribution of the foregrounds in the wavelet domain. The proposed estimation procedure takes advantage of the IRIS 100 micron as an extra observation on the galactic center for enhanced dust removal. We show that this new CMB map presents several interesting aspects: i) it is a full sky map without using any inpainting or interpolating method, ii) foreground contamination is very low, iii) the Galactic center is very clean, with especially low dust contamination as measured by the cross-correlation between the estimated CMB map and the IRIS 100 micron map, and iv) it is free of thermal SZ contamination.Comment: Astronomy and Astrophysics, accepte

    Reconstruction of the cosmic microwave background lensing for Planck

    Get PDF
    Aims. We prepare real-life cosmic microwave background (CMB) lensing extraction with the forthcoming Planck satellite data by studying two systematic effects related to the foreground contamination: the impact of foreground residuals after a component separation on the lensed CMB map, and the impact of removing a large contaminated region of the sky. Methods. We first use the generalized morphological component analysis (GMCA) method to perform a component separation within a simplified framework, which allows a high statistics Monte-Carlo study. For the second systematic, we apply a realistic mask on the temperature maps and then restore them with a recently developed inpainting technique on the sphere. We investigate the reconstruction of the CMB lensing from the resultant maps using a quadratic estimator in the flat sky limit and on the full sphere. Results. We find that the foreground residuals from the GMCA method does not significantly alter the lensed signal, which is also true for the mask corrected with the inpainting method, even in the presence of point source residuals
    corecore